Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Immunol ; 13: 912579, 2022.
Article in English | MEDLINE | ID: covidwho-2313484

ABSTRACT

Background: Coronavirus-19 (COVID-19) disease is driven by an unchecked immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus which alters host mitochondrial-associated mechanisms. Compromised mitochondrial health results in abnormal reprogramming of glucose metabolism, which can disrupt extracellular signalling. We hypothesized that examining mitochondrial energy-related signalling metabolites implicated in host immune response to SARS-CoV-2 infection would provide potential biomarkers for predicting the risk of severe COVID-19 illness. Methods: We used a semi-targeted serum metabolomics approach in 273 patients with different severity grades of COVID-19 recruited at the acute phase of the infection to determine the relative abundance of tricarboxylic acid (Krebs) cycle-related metabolites with known extracellular signaling properties (pyruvate, lactate, succinate and α-ketoglutarate). Abundance levels of energy-related metabolites were evaluated in a validation cohort (n=398) using quantitative fluorimetric assays. Results: Increased levels of four energy-related metabolites (pyruvate, lactate, a-ketoglutarate and succinate) were found in critically ill COVID-19 patients using semi-targeted and targeted approaches (p<0.05). The combined strategy proposed herein enabled us to establish that circulating pyruvate levels (p<0.001) together with body mass index (p=0.025), C-reactive protein (p=0.039), D-Dimer (p<0.001) and creatinine (p=0.043) levels, are independent predictors of critical COVID-19. Furthermore, classification and regression tree (CART) analysis provided a cut-off value of pyruvate in serum (24.54 µM; p<0.001) as an early criterion to accurately classify patients with critical outcomes. Conclusion: Our findings support the link between COVID-19 pathogenesis and immunometabolic dysregulation, and show that fluorometric quantification of circulating pyruvate is a cost-effective clinical decision support tool to improve patient stratification and prognosis prediction.


Subject(s)
COVID-19 , Biomarkers , C-Reactive Protein , Creatinine , Glucose , Humans , Ketoglutaric Acids , Lactates , Prognosis , Pyruvic Acid , SARS-CoV-2 , Succinates , Tricarboxylic Acids
2.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2045164

ABSTRACT

Background Coronavirus-19 (COVID-19) disease is driven by an unchecked immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus which alters host mitochondrial-associated mechanisms. Compromised mitochondrial health results in abnormal reprogramming of glucose metabolism, which can disrupt extracellular signalling. We hypothesized that examining mitochondrial energy-related signalling metabolites implicated in host immune response to SARS-CoV-2 infection would provide potential biomarkers for predicting the risk of severe COVID-19 illness. Methods We used a semi-targeted serum metabolomics approach in 273 patients with different severity grades of COVID-19 recruited at the acute phase of the infection to determine the relative abundance of tricarboxylic acid (Krebs) cycle-related metabolites with known extracellular signaling properties (pyruvate, lactate, succinate and α-ketoglutarate). Abundance levels of energy-related metabolites were evaluated in a validation cohort (n=398) using quantitative fluorimetric assays. Results Increased levels of four energy-related metabolites (pyruvate, lactate, a-ketoglutarate and succinate) were found in critically ill COVID-19 patients using semi-targeted and targeted approaches (p<0.05). The combined strategy proposed herein enabled us to establish that circulating pyruvate levels (p<0.001) together with body mass index (p=0.025), C-reactive protein (p=0.039), D-Dimer (p<0.001) and creatinine (p=0.043) levels, are independent predictors of critical COVID-19. Furthermore, classification and regression tree (CART) analysis provided a cut-off value of pyruvate in serum (24.54 µM;p<0.001) as an early criterion to accurately classify patients with critical outcomes. Conclusion Our findings support the link between COVID-19 pathogenesis and immunometabolic dysregulation, and show that fluorometric quantification of circulating pyruvate is a cost-effective clinical decision support tool to improve patient stratification and prognosis prediction.

3.
JCI Insight ; 7(17)2022 09 08.
Article in English | MEDLINE | ID: covidwho-2020638

ABSTRACT

The immune factors associated with impaired SARS-CoV-2 vaccine response in elderly people are mostly unknown. We studied individuals older than 60 and younger than 60 years, who had been vaccinated with SARS-CoV-2 BNT162b2 mRNA, before and after the first and second dose. Aging was associated with a lower anti-RBD IgG levels and a decreased magnitude and polyfunctionality of SARS-CoV-2-specific T cell response. The dramatic decrease in thymic function in people > 60 years, which fueled alteration in T cell homeostasis, and their lower CD161+ T cell levels were associated with decreased T cell response 2 months after vaccination. Additionally, deficient DC homing, activation, and TLR-mediated function, along with a proinflammatory functional profile in monocytes, were observed in the > 60-year-old group, which was also related to lower specific T cell response after vaccination. These findings might be relevant for the improvement of the current vaccination strategies and for the development of new vaccine prototypes.


Subject(s)
COVID-19 , Viral Vaccines , Aged , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Middle Aged , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
4.
PLoS One ; 17(7): e0269875, 2022.
Article in English | MEDLINE | ID: covidwho-1933349

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic has overwhelmed hospital services due to the rapid transmission of the virus and its severity in a high percentage of cases. Having tools to predict which patients can be safely early discharged would help to improve this situation. METHODS: Patients confirmed as SARS-CoV-2 infection from four Spanish hospitals. Clinical, demographic, laboratory data and plasma samples were collected at admission. The patients were classified into mild and severe/critical groups according to 4-point ordinal categories based on oxygen therapy requirements. Logistic regression models were performed in mild patients with only clinical and routine laboratory parameters and adding plasma pro-inflammatory cytokine levels to predict both early discharge and worsening. RESULTS: 333 patients were included. At admission, 307 patients were classified as mild patients. Age, oxygen saturation, Lactate Dehydrogenase, D-dimers, neutrophil-lymphocyte ratio (NLR), and oral corticosteroids treatment were predictors of early discharge (area under curve (AUC), 0.786; sensitivity (SE) 68.5%; specificity (S), 74.5%; positive predictive value (PPV), 74.4%; and negative predictive value (NPV), 68.9%). When cytokines were included, lower interferon-γ-inducible protein 10 and higher Interleukin 1 beta levels were associated with early discharge (AUC, 0.819; SE, 91.7%; S, 56.6%; PPV, 69.3%; and NPV, 86.5%). The model to predict worsening included male sex, oxygen saturation, no corticosteroids treatment, C-reactive protein and Nod-like receptor as independent factors (AUC, 0.903; SE, 97.1%; S, 68.8%; PPV, 30.4%; and NPV, 99.4%). The model was slightly improved by including the determinations of interleukine-8, Macrophage inflammatory protein-1 beta and soluble IL-2Rα (CD25) (AUC, 0.952; SE, 97.1%; S, 98.1%; PPV, 82.7%; and NPV, 99.6%). CONCLUSIONS: Clinical and routine laboratory data at admission strongly predict non-worsening during the first two weeks; therefore, these variables could help identify those patients who do not need a long hospitalization and improve hospital overcrowding. Determination of pro-inflammatory cytokines moderately improves these predictive capacities.


Subject(s)
COVID-19 , SARS-CoV-2 , Biomarkers , Cytokines , Humans , Male , Patient Discharge
5.
Microorganisms ; 9(11)2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1542673

ABSTRACT

Viral and host immune kinetics during acute COVID-19 and after remission of acute symptoms need better characterization. SARS-CoV-2 RNA, anti-SARS-CoV-2 IgA, IgM, and IgG antibodies, and proinflammatory cytokines were measured in sequential samples from hospitalized COVID-19 patients during acute infection and six months following diagnosis. Twenty four laboratory confirmed COVID-19 patients with mild/moderate and severe COVID-19 were included. Most were males (83%) with a median age of 61 years. Twenty one percent were admitted to the intensive care unit (ICU) and eight of them (33.3%) met the criteria for severe COVID-19 disease. A delay in SARS-CoV-2 levels' decline during the first six days of follow up, and viral load persistence until month 3 were related to severe COVID-19, but not viral load levels at the diagnosis. Higher levels of anti-SARS-CoV-2 IgA, IgM, IgG and the cytokines IL-6, IL-8 and MIP-1ß at the diagnosis time were related to the severe COVID-19 outcome. Higher levels of MIP-1ß, IL-1ß, MIP-1α and IFN-γ were observed at month 1 and 3 during mild/moderate disease, compared to severe COVID-19. IgG persisted at low levels after six months of diagnosis. In conclusion, higher concentrations of IgA, IgM, and IgG, and IL-6, IL-8 and MIP-1ß are identified as early predictors of COVID-19 severity, whereas no significant association is found between baseline SARS-COV-2 viral load and COVID-19 severity.

6.
Cell Mol Immunol ; 18(9): 2128-2139, 2021 09.
Article in English | MEDLINE | ID: covidwho-1320227

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)-2 infection induces an exacerbated inflammation driven by innate immunity components. Dendritic cells (DCs) play a key role in the defense against viral infections, for instance plasmacytoid DCs (pDCs), have the capacity to produce vast amounts of interferon-alpha (IFN-α). In COVID-19 there is a deficit in DC numbers and IFN-α production, which has been associated with disease severity. In this work, we described that in addition to the DC deficiency, several DC activation and homing markers were altered in acute COVID-19 patients, which were associated with multiple inflammatory markers. Remarkably, previously hospitalized and nonhospitalized patients remained with decreased numbers of CD1c+ myeloid DCs and pDCs seven months after SARS-CoV-2 infection. Moreover, the expression of DC markers such as CD86 and CD4 were only restored in previously nonhospitalized patients, while no restoration of integrin ß7 and indoleamine 2,3-dyoxigenase (IDO) levels were observed. These findings contribute to a better understanding of the immunological sequelae of COVID-19.


Subject(s)
COVID-19/immunology , Dendritic Cells/immunology , SARS-CoV-2/immunology , Cells, Cultured , Female , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interferon-alpha/immunology , Leukocytes, Mononuclear/immunology , Male , Severity of Illness Index
7.
Front Aging Neurosci ; 13: 632673, 2021.
Article in English | MEDLINE | ID: covidwho-1170101

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread around the globe causing coronavirus disease 2019 (COVID-19). Because it affects the respiratory system, common symptoms are cough and breathing difficulties with fever and fatigue. Also, some cases progress to acute respiratory distress syndrome (ARDS). The acute phase of COVID-19 has been also related to nervous system symptoms, including loss of taste and smell as well as encephalitis and cerebrovascular disorders. However, it remains unclear if neurological complications are due to the direct viral infection of the nervous system, or they appear as a consequence of the immune reaction against the virus in patients who presented pre-existing deficits or had a certain detrimental immune response. Importantly, the medium and long-term consequences of the infection by SARS-CoV-2 in the nervous system remain at present unknown. This review article aims to give an overview of the current neurological symptoms associated with COVID-19, as well as attempting to provide an insight beyond the acute affectation.

SELECTION OF CITATIONS
SEARCH DETAIL